
Optimizing linear maps modulo 2

Daniel J. Bernstein ?

Department of Computer Science (MC 152)
The University of Illinois at Chicago

Chicago, IL 60607–7053
djb@cr.yp.to

Abstract. This paper introduces and analyzes an algorithm to compile
a series of exclusive-or operations. The compiled series is quite efficient,
almost always beating the so-called “Four Russians” approach, and uses
no temporary storage beyond its outputs. The algorithm is reasonably
fast and surprisingly simple.

1 Introduction

Consider the 4-bit-to-4-bit F2-linear function L : F4
2 → F4

2 defined by
L(x0, x1, x2, x3) = (x0⊕ x1⊕ x2⊕ x3, x0⊕ x2⊕ x3, x0⊕ x1⊕ x2, x0⊕ x3);
i.e.,

L

x0

x1

x2

x3

 =

1 1 1 1
1 0 1 1
1 1 1 0
1 0 0 1

x0

x1

x2

x3

 .

Evaluating L directly from its definition takes 8 bit xors: xor x0 and
x1, then xor x2, then xor x3, obtaining (Lx)0; xor x0 and x2, then xor
x3, obtaining (Lx)1; xor x0 and x1, then xor x2, obtaining (Lx)2; finally
xor x0 and x3, obtaining (Lx)3. However, this computation has several
obvious redundancies, and a closer look shows that L can be computed
in just 4 xors:

(Lx)0 ⊕oo

������������
x0

��

(Lx)1 ⊕oo

^^<<<<
x1

qq

(Lx)2 ⊕oo x2

nn

(Lx)3 ⊕oo

VV..........
x3oo

qq

? Permanent ID of this document: e5c3095f5c423e2fe19fa072e23bd5d7. Date of this
document: 2009.08.30. This work was supported by the National Science Foundation
under grant ITR–0716498.

2 Daniel J. Bernstein

Similarly, if x0, x1, x2, x3 are (e.g.) 128-bit vector registers, then the 8
vector xors in (x0 ⊕ x1 ⊕ x2 ⊕ x3, x0 ⊕ x2 ⊕ x3, x0 ⊕ x1 ⊕ x2, x0 ⊕ x3) can
be replaced by 4 vector xors.

This paper presents an algorithm that, given the matrix for a p-bit-to-
q-bit F2-linear function L : Fp

2 → Fq
2, prints code to compute L. Heuristics

for large p, q suggest, and experiments confirm, that for most functions
L the code uses approximately pq/(lg q − lg lg q) xors. The code writes
only to the q output bits and does not need any extra storage; it does
not require tradeoffs between space and time. The code reads each of the
p input bits exactly once, in order, except that it skips unused bits. The
compilation algorithm per se is reasonably fast and surprisingly simple.

Applications. Bitsliced binary-finite-field arithmetic has recently set
software speed records for public-key cryptography; see [5]. The software
described in [5] spends most of its time in short hand-optimized linear
computations such as

vec h0 = h[i];
vec h12 = h[i + n] ^ h[i + 2 * n];
vec h34 = h[i + 3 * n] ^ h[i + 4 * n];
vec h56 = h[i + 5 * n] ^ h[i + 6 * n];
vec h7 = h[i + 7 * n];
vec x0 = u[i];
vec x12 = u[i + n] ^ u[i + 2 * n];
vec x3 = u[i + 3 * n];
vec h1 = h12 ^ h0 ^ u2[i];
vec b = h34 ^ h12 ^ u2[i + n];
vec c = h34 ^ h56 ^ u3[i];
vec h6 = h7 ^ h56 ^ u3[i + n];
h[i + n] = h1;
h[i + 2 * n] = b ^ h0 ^ x0;
h[i + 3 * n] = c ^ h1 ^ x12 ^ x0 ^ u4[i];
h[i + 4 * n] = h6 ^ b ^ x12 ^ x3 ^ u4[i + n];
h[i + 5 * n] = h7 ^ c ^ x3;
h[i + 6 * n] = h6;

where each ^ is a 128-bit vector xor. Unfortunately, hand optimization is
time-consuming even for small examples.

This paper’s algorithm can be used as a baseline compilation technique
for all F2-linear functions L. In many cases the algorithm is competitive
with the best hand-optimized code, saving time for the programmer. The
algorithm can also be applied to extremely large examples: for example,

Optimizing linear maps modulo 2 3

I have used it to generate fast unrolled bitsliced normal-basis conversion
functions for the cryptanalytic computation described in [3], converting
a 131 × 131 basis-conversion matrix into a sequence of 3380 xors and
converting a 163× 163 matrix into a sequence of 5078 xors.

This paper focuses on the number of xors as a simplified model of
software time. The model is reasonably accurate for computations that
fit into registers: the code does not require three-operand instructions,
and it usually has enough parallelism to occupy all available arithmetic
units. The same algorithm also appears to perform reasonably well for
larger computations, but a detailed analysis of load/store costs is beyond
the scope of this paper.

One should not think of this algorithm as magically discovering every
fast linear computation in the literature. For example, if ϕ ∈ F2[x] is a
polynomial of degree n, then the F2-linear function f 7→ f2 on F2[x]/ϕ,
with basis 1, x, . . . , xn−1, can be computed with O(n lg n) xors by fast-
multiplication techniques. For most choices of ϕ, feeding the same linear
function to this paper’s algorithm would use many more xors, at least for
large n.

Previous methods. “Input partitioning” is the following classic method
to compute q sums of subsequences of x0, x1, . . . , xp−1:

• Partition {0, 1, . . . , p− 1} into p/c parts of size c. This description
assumes for simplicity that p is a multiple of c.
• For each part, and for each nonempty subset S of the part, compute

the subset sum
∑

i∈S xi. This takes (p/c)(2c − c − 1) additions; note
that each new subset sum requires only one addition.
• Compute each of the output sums as a sum of (at worst) p/c subset

sums. This takes q(p/c−1) additions. Note that the speedup here goes
beyond common-subexpression elimination; it takes advantage of the
associativity of addition.

A standard analysis—disregarding variants such as eliminating unused
subsets—chooses c ∈ lg q − lg lg q − lg log 2 + o(1) and produces a bound
of pq(1+(1/ log 2+lg log 2+o(1))/ lg q)/(lg q−lg lg q) additions. The total
number of additions is therefore asymptotically (1 + o(1))q2/ lg q in the
typical case p = q.

Input partitioning for vectors of Boolean truth values was introduced
by Lupanov in [10]. Obviously input partitioning also works for vectors
of integers, vectors of integers modulo 2, etc. Fifteen years later the
same construction appeared in [2, “Lemma (M. Kronrod)”] as a tool

4 Daniel J. Bernstein

for Boolean matrix multiplication. Input partitioning is often called the
“Four-Russians algorithm” by people who

• see that [2] was written by Arlazarov, Dinic, Kronrod, and Faradžev,
all of which sound like Russian names to the ignorant observer;
• have not actually read [2], and are thus unaware that the method is

credited to Kronrod alone;
• are unaware of previous work such as [10]; and
• are unaware that normal scientific standards require giving credit by

name.

See, e.g., [15], [11], [4], and [6].
An extra technique, which I call “output clumping,” asymptotically

reduces (1+o(1))q2/ lg q to (1+o(1))q2/ lg(q2), saving a factor of 2+o(1).
This technique was introduced by Nechiporuk and pushed much further
by Pippenger; see [12], [13], and [14]. Pippenger’s addition chains are
within a factor of 1 + o(1) of optimal for a wide variety of problems; see
generally [13, Section 2] and [14, Section 2].

Trifonov in [16] states that input partitioning produces addition chains
of length 2q2/ lg q, and that a much slower—but still usable—algorithm
finds “considerably smaller” xor chains. Input-partitioning chains actually
have length (1+o(1))q2/ lg q, so the comparison in [16] is clearly erroneous;
it is nevertheless possible that the algorithm of [16] has some merit.

Algorithm comparison. This paper’s algorithm produces xor chains
that, for p = q, have length (1 + o(1))q2/ lg q. Input partitioning also
produces chains of length (1 + o(1))q2/ lg q, but a closer look at the o(1)
suggests that this paper’s chains are shorter by a factor of nearly 1+1/ lg q.
Input partitioning also appears to be somewhat less memory-friendly than
this paper’s algorithm.

Pippenger’s addition chains are shorter than this paper’s chains for
sufficiently large p, q. However, preliminary experiments indicate that this
paper’s xor chains are shorter than Pippenger’s addition chains for p, q ≤
256. Perhaps there is some way to combine the ideas of these algorithms.

2 The algorithm

An efficient multi-scalar-multiplication method appears in [7, Section 4]
with credit to Bos and Coster. To compute n0x0 + n1x1 + n2x2 + · · · ,
where n0 ≥ n1 ≥ n2 ≥ · · · ≥ 0, Bos and Coster recursively compute
(n0 − n1)x0 + n1(x0 + x1) + n2x2 + · · · . They use a more complicated
step in the case that n0 is much larger than n1, since subtracting n1 from

Optimizing linear maps modulo 2 5

n0 is then ineffective at reducing n0, although this case rarely occurs for
random scalars.

A transposed version of the Bos–Coster method computes multiples
n0x, n1x, n2x, . . ., where n0 ≥ n1 ≥ n2 ≥ · · · , by recursively computing
(n0 − n1)x, n1x, . . . , nq−1x and then adding output 1 into output 0.

This paper’s algorithm has the same outline but uses xor instead of
subtraction: it computes several dot products L0x, L1x, L2x, . . ., where
L0 ≥ L1 ≥ L2 ≥ · · · , by recursively computing (L0⊕L1)x, L1x, . . . , Lq−1x
and then xoring output 1 into output 0. The case that L0 is much larger
than L1 (specifically, that it has its most significant bit at a different
position) is much more common here, and requires different treatment:
the algorithm reduces L0 by simply clearing its most significant bit.

Details. The input to the algorithm is a q × p matrix of bits, viewed
as a sequence of q rows L0, L1, . . . , Lq−1 ∈ Fp

2, where p and q are non-
negative integers. The p bits Lj [0], Lj [1], . . . , Lj [p − 1] of Lj specify the
linear function x0, x1, . . . , xp−1 7→ Lj [0]x0⊕Lj [1]x1⊕ · · · ⊕Lj [p− 1]xp−1;
the algorithm produces code that computes these q linear functions. The
algorithm works as follows:

• If q = 0: Stop. (There is nothing to compute.)
• If p = 0: Generate code that sets each output bit to 0. Stop.
• Find j ∈ {0, 1, . . . , q − 1} that maximizes Lj in reverse lexicographic

order (i.e., maximizes Lj [p−1]; secondarily maximizes Lj [p−2]; etc.).
• If Lj [p − 1] = 0: Define L′k as (Lk[0], . . . , Lk[p − 2]) for each k ∈
{0, 1, . . . , q − 1}. Recursively apply the algorithm to L′0, L

′
1, . . . , L

′
q−1.

Stop. (All Lk[p− 1] are 0; i.e., xp−1 is unused.)
• If q ≥ 2: Find i ∈ {0, 1, . . . , q − 1} − {j} that maximizes Li in reverse

lexicographic order. If Li[p − 1] = 1: Define L′k = Lk for each k ∈
{0, 1, . . . , q − 1}, except that L′j = Lj ⊕ Li. Recursively apply the
algorithm to L′0, L

′
1, . . . , L

′
q−1. Generate code that xors output bit i

into output bit j. Stop.
• Define L′k = Lk for each k ∈ {0, 1, . . . , q − 1}, except that L′j [p− 1] =

0. Recursively apply the algorithm to L′0, L
′
1, . . . , L

′
q−1. Generate code

that xors input bit p− 1 into output bit j. Stop.

The recursive steps in the algorithm can and should store L′ on top of L,
eliminating the space for L′ and almost all of the time to compute L′. If
the output code is generated in reverse order then the recursive steps can
be replaced by tail-recursive steps, eliminating all other storage. If the
rows, or pointers to the rows, are stored in a heap then identifying the
two largest rows takes only a logarithmic number of row comparisons.

6 Daniel J. Bernstein

The code generated by this algorithm starts with code to set each
output bit to 0. Except in the extreme case Lj = 0, the code to set output
bit j to 0 can and should be merged with a subsequent xor involving
output bit j, turning the xor into a copy. One can, as an option, merge
the copies with further xors, although in some cases this is incompatible
with reading each input exactly once.

A transposed version of the same algorithm writes each of the output
bits exactly once, in order, and otherwise works entirely within the p
input bits.

Example. Consider the four rows appearing at the start of this paper:
L0 = (1 1 1 1); L1 = (1 0 1 1); L2 = (1 1 1 0); L3 = (1 0 0 1).

The largest row in reverse lexicographic order is L0 = (1 1 1 1), and
the second largest is L1 = (1 0 1 1). The last instruction in the compiled
code is to xor output bit 1 into output bit 0. The goal of the previous
instructions is to compute L′0 = (0 1 0 0); L′1 = (1 0 1 1); L′2 = (1 1 1 0);
L′3 = (1 0 0 1). Here L′0 = L0 ⊕ L1.

The largest remaining row is L′1 = (1 0 1 1), followed by L′3 = (1 0 0 1).
The second-to-last instruction in the compiled code is to xor output bit
3 into output bit 1. The goal of the previous instructions is to compute
L′′0 = (0 1 0 0); L′′1 = (0 0 1 0); L′′2 = (1 1 1 0); L′′3 = (1 0 0 1). Here L′′1 =
L′1 ⊕ L′3.

The largest remaining row is L′′3 = (1 0 0 1), followed by L′′2 = (1 1 1 0).
The third-to-last instruction in the compiled code is to xor input bit 3
into output bit 3. The goal of the previous instructions is to compute
L′′′0 = (0 1 0); L′′′1 = (0 0 1); L′′′2 = (1 1 1); L′′′3 = (1 0 0).

The largest remaining row is L′′′2 = (1 1 1), followed by L′′′1 = (0 0 1).
The fourth-to-last instruction in the compiled code is to xor output bit
1 into output bit 2. Et cetera. The algorithm finishes with the following
sequence of instructions:

• Store 0 in output bit 0.
• Store 0 in output bit 1.
• Store 0 in output bit 2.
• Store 0 in output bit 3.
• Xor input bit 0 into output bit 3.
• Xor output bit 3 into output bit 2.
• Xor input bit 1 into output bit 0.
• Xor output bit 0 into output bit 2.
• Xor input bit 2 into output bit 1.
• Xor output bit 1 into output bit 2.

Optimizing linear maps modulo 2 7

• Xor input bit 3 into output bit 3.
• Xor output bit 3 into output bit 1.
• Xor output bit 1 into output bit 0.

Eliminating 0 produces the following sequence of instructions:

• Copy input bit 0 into output bit 3.
• Copy output bit 3 into output bit 2.
• Copy input bit 1 into output bit 0.
• Xor output bit 0 into output bit 2.
• Copy input bit 2 into output bit 1.
• Xor output bit 1 into output bit 2.
• Xor input bit 3 into output bit 3.
• Xor output bit 3 into output bit 1.
• Xor output bit 1 into output bit 0.

One can, as an option, eliminate the copies:

• Xor input bit 1 and input bit 0, producing output bit 2.
• Xor input bit 2 into output bit 2.
• Xor input bit 3 to input bit 0, producing output bit 3.
• Xor output bit 3 to input bit 2, producing output bit 1.
• Xor output bit 1 to input bit 1, producing output bit 0.

3 Experimental results

Appendix A shows xor.cpp, a straightforward C++ implementation of
this paper’s algorithm. Running

g++ -o xor xor.cpp
echo 1111101111101001 | ./xor 4 4 > test.c
gcc -o test test.c
./test

applies the algorithm to the function L shown at the beginning of this
paper; creates a test program test.c for the resulting code; and prints 4
zeros, indicating that all 4 outputs were computed correctly.

More generally, xor p q reads q × p input bits, applies this paper’s
algorithm, and prints a test program that prints q zeros. I checked this for
10 random q × p matrices (from /dev/urandom, the Linux cryptographic
random number generator) for each pair (p, q) ∈ {1, 2, 3, . . . , 10}2. The
program packs each matrix row into an unsigned long long, so it is

8 Daniel J. Bernstein

limited to p ∈ {0, 1, 2, . . . , 64}, but it allows any q ∈ {1, 2, 3, . . .} that fits
into memory.

The output of xor begins with two comment lines stating (1) the
cost of the computation and (2) the cost after zero elimination. I used
a separate script to check, again for 10 random matrices of each size,
that the number of xors in the code matched (1) the first comment and
matched (2) the second comment plus the number of nonzero L rows.

The following table shows the average cost after zero elimination,
divided by pq, for 10000 random q × p matrices:

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
q = 1 0.0000 0.1242 0.2638 0.3785 0.4393 0.4691 0.4845
q = 2 0.0000 0.1118 0.2352 0.3407 0.3987 0.4293 0.4434
q = 4 0.0000 0.0866 0.2041 0.3019 0.3573 0.3860 0.4002
q = 8 0.0000 0.0562 0.1647 0.2603 0.3151 0.3424 0.3564

q = 16 0.0000 0.0309 0.1209 0.2158 0.2694 0.2965 0.3101
q = 32 0.0000 0.0156 0.0769 0.1721 0.2247 0.2514 0.2647
q = 64 0.0000 0.0078 0.0424 0.1350 0.1859 0.2119 0.2250

q = 128 0.0000 0.0039 0.0215 0.1055 0.1537 0.1794 0.1922
q = 256 0.0000 0.0020 0.0107 0.0789 0.1282 0.1530 0.1657
q = 512 0.0000 0.0010 0.0054 0.0525 0.1066 0.1318 0.1443

q = 1024 0.0000 0.0005 0.0027 0.0296 0.0868 0.1140 0.1269
q = 2048 0.0000 0.0002 0.0013 0.0151 0.0730 0.1003 0.1125
q = 4096 0.0000 0.0001 0.0007 0.0075 0.0652 0.0886 0.1006

The following table shows the standard deviation of the same quantity
for the same matrices:

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
q = 1 0.0000 0.2161 0.2227 0.1736 0.1240 0.0885 0.0621
q = 2 0.0000 0.1243 0.1322 0.1026 0.0731 0.0515 0.0361
q = 4 0.0000 0.0577 0.0763 0.0610 0.0423 0.0301 0.0214
q = 8 0.0000 0.0188 0.0421 0.0347 0.0243 0.0172 0.0120

q = 16 0.0000 0.0031 0.0198 0.0186 0.0128 0.0092 0.0064
q = 32 0.0000 0.0002 0.0072 0.0100 0.0070 0.0048 0.0034
q = 64 0.0000 0.0000 0.0014 0.0060 0.0040 0.0027 0.0019

q = 128 0.0000 0.0000 0.0001 0.0040 0.0023 0.0016 0.0011
q = 256 0.0000 0.0000 0.0000 0.0024 0.0015 0.0009 0.0006
q = 512 0.0000 0.0000 0.0000 0.0011 0.0009 0.0006 0.0004

q = 1024 0.0000 0.0000 0.0000 0.0002 0.0004 0.0003 0.0002
q = 2048 0.0000 0.0000 0.0000 0.0000 0.0003 0.0002 0.0001
q = 4096 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0001

Optimizing linear maps modulo 2 9

For example, this algorithm evaluates 64-bit-to-128-bit linear maps using
approximately 0.1922 · 128 · 64 ≈ 1575 xors on average, with standard
deviation approximately 0.0011 · 128 · 64 ≈ 9.

For comparison, consider partitioning 64 inputs into 16 4-bit parts,
and computing 128 outputs from xors of subsets of the parts. One expects
each of the 128 outputs to involve 16(1−1/24) nonzero subsets on average,
and therefore to consume at least 16(1− 1/24)− 1 xors on average. Each
part has 24 − 4− 1 subsets of size 2 or larger; each subset is needed with
probability 1− (1− 1/24)128, and therefore consumes on average at least
1− (1− 1/24)128 xors. The total cost is at least 128(16(1− 1/24)− 1) +
16(24 − 4− 1)(1− (1− 1/24)128) ≈ 1967.95 xors on average.

A better strategy is to partition 64 inputs into 10 6-bit parts and 1 4-
bit part. The total cost is then at least 128(10(1−1/26)+1(1−1/24)−1)+
10(26−6−1)(1−(1−1/26)128)+1(24−4−1)(1−(1−1/24)128) ≈ 1757.06
xors on average.

One can consider other strategies, including “fractional” possibilities
such as partitioning 64 inputs into 4 6-bit parts and 8 5-bit parts, but
none of these strategies seem to come close to the 1575 xors used by the
algorithm introduced in this paper.

Heuristic analysis. To understand the performance of this algorithm
for q = 128, assume that exactly 64 of the 128 input rows involve the most
significant input bit xp−1. Performing 64 xors of adjacent rows typically
produces 6 or more clear bits in each new row:

• At most 1 of the new rows can start with xp−2: scanning through the
sorted rows produces only one transition from . . . , 0, 1 to . . . , 1, 1.
• At most 2 of the new rows can start with xp−3: one for the transition

from . . . , 0, 1, 1 to . . . , 1, 1, 1, and one for the transition from . . . , 0, 0, 1
to . . . , 1, 0, 1.
• At most 4 of the new rows can start with xp−4.
• At most 8 of the new rows can start with xp−5.
• At most 16 of the new rows can start with xp−6.
• The remaining 33 new rows must start with xp−7 or beyond.

At this point there are about 33 rows starting with xp−2, and the next 33
xors typically produce 5 or more clear bits. After a few more iterations
the algorithm settles down on a steady state consuming fewer than 30
xors for each bit.

For general q, the steady state appears to have approximately q/c rows
starting with the most significant bit, where c ∈ R satisfies 2c = q/c. The
algorithm thus uses approximately pq/(lg q − lg lg q) xors.

10 Daniel J. Bernstein

References

[1] — (no editor), 17th annual symposium on foundations of computer science, IEEE
Computer Society, Long Beach, California, 1976. MR 56:1766. See [3].

[2] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradžev, On economical con-
struction of the transitive closure of an oriented graph, Soviet Mathematics Dok-
lady 11 (1970), 1209–1210. ISSN 0197–6788. MR 42:4441. URL: http://cr.yp.to/
bib/entries.html#1970/arlazarov. Citations in this document: §1, §1, §1.

[3] Daniel V. Bailey, Brian Baldwin, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Gauthier van Damme, Giacomo de Meulenaer, Junfeng Fan,
Tim Gneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens,
Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, The Certicom
challenges ECC2-X, in Workshop Record of SHARCS’09 (2009). Citations in this
document: §1.

[4] Gregory Bard, Accelerating cryptanalysis with the Method of Four Russians (2006).
URL: http://eprint.iacr.org/2006/251. Citations in this document: §1.

[5] Daniel J. Bernstein, Batch binary Edwards, in [9] (2009), 317–336. Citations in this
document: §1, §1.

[6] Tomas J. Boothby, Robert W. Bradshaw, Bitslicing and the method of four Rus-
sians over larger finite fields. URL: http://arxiv.org/abs/0901.1413. Citations
in this document: §1.

[7] Peter de Rooij, Efficient exponentiation using precomputation and vector addition
chains, in [8] (1995), 389–399. MR 1479665. Citations in this document: §2.

[8] Alfredo De Santis (editor), Advances in cryptology: EUROCRYPT ’94, Lecture
Notes in Computer Science, 950, Springer, Berlin, 1995. ISBN 3–540–60176–7. MR
98h:94001. See [3].

[9] Shai Halevi (editor), Advances in Cryptology—CRYPTO 2009, 29th annual in-
ternational cryptology conference, Santa Barbara, CA, USA, August 16–20, 2009,
proceedings, Lecture Notes in Computer Science, 5677, Springer, 2009. See [3].

[10] O. B. Lupanov, On rectifier and contact-rectifier circuits, Doklady Akademii Nauk
SSSR 111 (1956), 1171–1174. ISSN 0002–3264. URL: http://cr.yp.to/bib/

entries.html#1956/lupanov. Citations in this document: §1, §1.
[11] Eugene W. Myers, A four Russians algorithm for regular expression pattern match-

ing, Journal of the ACM 39 (1992), 430–448. Citations in this document: §1.
[12] Nicholas Pippenger, On the evaluation of powers and related problems (prelimi-

nary version), in [1] (1976), 258–263; newer version split into [13] and [14]. MR
58:3682. URL: http://cr.yp.to/bib/entries.html#1976/pippenger. Citations
in this document: §1.

[13] Nicholas Pippenger, The minimum number of edges in graphs with prescribed
paths, Mathematical Systems Theory 12 (1979), 325–346; see also older version
[12]. ISSN 0025–5661. MR 81e:05079. URL: http://cr.yp.to/bib/entries.html#
1979/pippenger. Citations in this document: §1, §1.

[14] Nicholas Pippenger, On the evaluation of powers and monomials, SIAM Journal
on Computing 9 (1980), 230–250; see also older version [12]. ISSN 0097–5397.
MR 82c:10064. URL: http://cr.yp.to/bib/entries.html#1980/pippenger. Ci-
tations in this document: §1, §1.

[15] Nicola Santoro, Extending the four Russians’ bound to general matrix multiplica-
tion, Information Processing Letters 10 (1980), 87–88. Citations in this document:
§1.

[16] Peter Trifonov, Matrix-vector multiplication via erasure decoding (2007). URL:
http://dcn.infos.ru/~petert/. Citations in this document: §1, §1, §1.

http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1970/arlazarov
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1970/arlazarov
http://eprint.iacr.org/2006/251
http://arxiv.org/abs/0901.1413
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1956/lupanov
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1956/lupanov
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1976/pippenger
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1979/pippenger
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1979/pippenger
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1980/pippenger
http://dcn.infos.ru/~petert/

Optimizing linear maps modulo 2 11

Appendix A: xor.cpp

#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

typedef unsigned long long uint64;

uint64 *L;
uint64 *origL;

void L_read(int p,int q)
{

for (int i = 0;i < q;++i)
for (int j = 0;j < p;++j) {

char c;
cin >> c;
L[i] = L[i] + (((uint64) (c & 1)) << j);

}
}

int L_cmp(int a,int b) { return L[a] < L[b]; }

vector<int> target;
vector<int> source;
vector<const char *> sourcetype;

void L_compile(int p,int q)
{

for (int i = 0;i < q;++i) origL[i] = L[i];
int pos[q];
for (int i = 0;i < q;++i) pos[i] = i;
make_heap(pos,pos + q,L_cmp);
while (p > 0) {
pop_heap(pos,pos + q,L_cmp);
if (L[pos[q - 1]] >> (p - 1))

if (q >= 2 && (L[pos[0]] >> (p - 1))) {
L[pos[q - 1]] ^= L[pos[0]];
target.push_back(pos[q - 1]);

12 Daniel J. Bernstein

sourcetype.push_back("out");
source.push_back(pos[0]);

} else {
L[pos[q - 1]] ^= (((uint64) 1) << (p - 1));
target.push_back(pos[q - 1]);
sourcetype.push_back("in");
source.push_back(p - 1);

}
else

--p;
push_heap(pos,pos + q,L_cmp);

}
}

void print(int p,int q)
{

int i;
int cost = target.size();
cout << "/* cost " << cost << " */\n";
for (i = 0;i < q;++i) if (origL[i] != 0) --cost;
cout << "/* cost " << cost << " after 0 elimination */\n";
cout << "#include <stdio.h>\n";
cout << "main() {\n";
for (i = 0;i < p;++i)
cout << "unsigned long long in" << i << " = "

<< (((uint64) 1) << i) << "ULL;\n";
for (i = 0;i < q;++i)
cout << "unsigned long long out" << i << " = 0;\n";

i = target.size();
while (i > 0) {
--i;
cout << "out" << target[i] << " ^= "

<< sourcetype[i] << source[i] << ";\n";
}
for (i = 0;i < q;++i)
cout << "printf(\"%llu\\n\",out"

<< i << " ^ " << origL[i] << "ULL);\n";
cout << "}\n";

}

Optimizing linear maps modulo 2 13

int main(int argc,char **argv)
{

int p = 8;
int q = 8;
if (argv[1]) {
p = q = atoi(argv[1]);
if (argv[2])

q = atoi(argv[2]);
}

L = new uint64[q];
origL = new uint64[q];

L_read(p,q);
L_compile(p,q);
print(p,q);
return 0;

}

