
Batch binary Edwards

Daniel J. Bernstein ?

Department of Computer Science (MC 152)
The University of Illinois at Chicago

Chicago, IL 60607–7053
djb@cr.yp.to

Abstract. This paper sets new software speed records for high-security
Diffie-Hellman computations, specifically 251-bit elliptic-curve variable-
base-point scalar multiplication. In one second of computation on a $200
Core 2 Quad Q6600 CPU, this paper’s software performs 30000 251-bit
scalar multiplications on the binary Edwards curve d(x + x2 + y + y2) =
(x + x2)(y + y2) over the field F2[t]/(t251 + t7 + t4 + t2 + 1) where d =
t57 + t54 + t44 +1. The paper’s field-arithmetic techniques can be applied
in much more generality but have a particularly efficient interaction with
the completeness of addition formulas for binary Edwards curves.

Keywords. Scalar multiplication, Diffie–Hellman, batch throughput,
vectorization, Karatsuba, Toom, elliptic curves, binary Edwards curves,
differential addition, complete addition formulas

1 Introduction

Which curves should one choose for elliptic-curve cryptography?
The first and most fundamental choice is between curves defined over binary

(i.e., characteristic-2) finite fields and curves defined over non-binary fields. For
example:

• NIST’s standard K-283 curve is the subfield curve y2 + xy = x3 + 1 over
the field F2[t]/(t283 + t12 + t7 + t5 + 1). NIST’s standard B-283 curve is a
particular non-subfield curve over the same binary field.

• NIST’s standard P-256 curve is a particular curve over the prime field
Z/(2256 − 2224 + 2192 + 296 − 1).

Multiplication in the polynomial ring F2[t] is, at first glance, just like multi-
plication in Z but skips all the carries. Furthermore, squaring in F2[t] is simply a
relabeling of exponents. One might therefore guess that curves over binary fields
are considerably faster than curves over large-characteristic fields.

However, the software speed records for elliptic-curve cryptography are—
and for many years have been—held by large-characteristic fields. The fastest
? Permanent ID of this document: 4d7766189e82c1381774dc840d05267b. Date of this

document: 2009.06.04. This work was supported by the National Science Foundation
under grant ITR–0716498.

2 Daniel J. Bernstein

Diffie–Hellman speeds (i.e., speeds for variable-base-point scalar multiplication
n, P 7→ nP) reported in ECRYPT’s publicly verifiable benchmarks [15] on a
single core of an Intel Core 2 Quad Q6600 (6fb, utrecht) are

• 321012 cycles for field size (2127 − 1)2 (using software from Galbraith, Lin,
and Scott, combining Edwards curves with the idea of [33]),

• 386739 cycles for field size 2255−19 (using software from Gaudry and Thomé
announced in [35]), and

• 855036 cycles for field size 2251 (also using software from [35]).

Similar comments apply to older processors: for example, Fong, Hankerson,
López, and Menezes in [30, Table 6] report 1720000 cycles on a Pentium III
for field size 2233, while [12] reports 832457 cycles on a Pentium III for field
size 2255 − 19. Subfield curves provide some speedups in the binary case—for
example, Hankerson et al. in [38, Table 7] report 1740000 cycles on a Pentium II
for field size 2283, and Hankerson, Karabina, and Menezes in [39, Table 5] report
758000 cycles on a Xeon 5460 (similar to a Core 2 Quad) for field size 2254—but
binary fields seem to have no hope of catching up to large-characteristic fields.

Why are large-characteristic fields so much faster than binary fields? The
conventional explanation is that today’s popular CPUs include fast “integer-
multiplication” (and “floating-point multiplication”) instructions that multiply
medium-size elements of Z, but do not include instructions to multiply medium-
size elements of F2[t]. Of course, one can multiply in F2[t] by combining simpler
CPU instructions, but the multiplication instructions for Z are much faster,
outweighing any possible advantages of characteristic 2. This effect has been
intensified by the transition from 32-bit processors to 64-bit processors: 64-bit
multipliers are even more powerful than 32-bit multipliers.

Why have CPU designers decided to include a circuit for multiplication in
Z and not a smaller, faster circuit for multiplication in F2[t]? The conventional
explanation is as follows. Most of the computer users who care about CPU speed
are measuring performance of weather simulation, movie decompression, video
games, etc. These applications rely heavily on multiplication in Z, rewarding
CPUs that include integer multipliers, floating-point multipliers, etc. The same
applications make very little use of multiplication in F2[t].

New speed records. This paper introduces new software named BBE251 for
scalar multiplication on a high-security binary elliptic curve, specifically the
binary Edwards curve d(x + x2 + y + y2) = (x + x2)(y + y2) over k, where
k = F2251 = F2[t]/(t251 + t7 + t4 + t2 + 1) and d = t57 + t54 + t44 + 1 ∈ k. This
curve has group order 4 · prime and twist order 2 · prime, and it satisfies all the
usual elliptic-curve security criteria; see Section 3.

BBE251 is so fast that it sets new speed records not just for binary elliptic
curves, but for all elliptic curves. For example, a benchmark of a batch of 1024
independent scalar multiplications took 321866514 cycles on a single core of
a Core 2 Quad Q6600 (6fb)—a cost of just 314323 Core 2 cycles per scalar
multiplication, improving upon all previous results. The Sage computer-algebra
system [63] was used to check a random sampling of outputs.

Batch binary Edwards 3

Readers and potential users are cautioned that BBE251 does not compute
one scalar multiplication in 314323 cycles. The software is given a batch of curve
points P1, P2, P3, . . . and an equal-length batch of integers n1, n2, n3, . . .; it pro-
duces a batch of multiples n1P1, n2P2, n3P3, The speed of BBE251 does not
rely on any relationships between the inputs; in fact, for fixed-size batches, the
software takes constant time, independent of the inputs. BBE251 nevertheless pro-
vides speed benefits from handling (n1, P1) together with (n2, P2) and (n3, P3)
and so on. BBE251 is faster than the software in [35] for the same field size once
the batch size is above 50; for large batches it is more than twice as fast.

Real-world servers bottlenecked by typical elliptic-curve computations can
gain speed by collecting the computations into batches, switching to the curve
introduced in this paper, and switching to the software introduced in this paper.
The batching increases latency by several milliseconds, but in most applications
this is not a problem, whereas raw throughput is often critical. BBE251 completes
1048576 scalar multiplications in just 35 seconds using all four cores of a single
2.4GHz Core 2 Quad Q6600 CPU; interference among the cores is negligible.
This is not the fastest single-chip scalar-multiplication measurement ever re-
ported in the literature—Güneysu and Paar in [36] reported “more than 37000
point multiplications per second”—but a closer look shows that [36] achieved
37000 224-bit scalar multiplications per second on a $1000 Xilinx Virtex-4 SX55
containing hundreds of multipliers, while this paper achieves 30000 251-bit scalar
multiplications per second on a $200 Core 2 Quad Q6600.

BBE251 provides several benefits beyond speed. It avoids all data-dependent
array indices, all data-dependent branches, etc., and is therefore immune to
cache-timing attacks, branch-prediction attacks, etc.; the same security feature
was already present in state-of-the-art software for large-characteristic elliptic
curves (see, e.g., [12]) but is hard to find for binary curves. BBE251 has been
posted (http://binary.cr.yp.to) to allow public verification of its accuracy
and speed, and has been placed into the public domain to maximize reusability.

How these speeds were achieved: low level. Schoolbook multiplication
of two 251-bit polynomials in F2[t] takes 125501 bit operations: specifically,
2512 = 63001 bit multiplications (ANDs) and 2502 = 62500 bit additions
(XORs). BBE251 instead uses several layers of Karatsuba and Toom recursions,
including some new refinements, reducing the number of bit operations to 33096,
approximately 3.79× smaller than 125501. See Section 2 for details.

The conventional wisdom is that bit-operation counts are a poor predictor
of software performance, for two critical reasons:

• CPUs handle multiple bits at once. For example, a 32-bit xor is a single
instruction, just as fast as a 16-bit xor or an 8-bit xor. It therefore makes
no sense to split a 32× 32-bit problem into three 16× 16-bit problems or to
split a 16× 16-bit problem into three 8× 8-bit problems.
• F2[t]-multiplication software is bottlenecked by the cost of shifting bits

within words, not by the cost of performing arithmetic on bits. For example,
extracting two 4-bit pieces from an 8-bit input is not free; it costs two or
three instructions, depending on the CPU.

http://binary.cr.yp.to

4 Daniel J. Bernstein

It is widely appreciated that fast multiplication techniques save time in soft-
ware for sufficiently large inputs, but the speedups are generally believed to be
rather small at cryptographic sizes—certainly not a 3.79× speedup for 251-bit
multiplication. Hankerson, Hernandez, and Menezes in [38, Section 3] say that
Karatsuba is “competitive” for 233 bits and for 283 bits but does not actually
save time. Bailey and Paar in [10] say that fast polynomial multiplication “yields
a 10% speedup in the overall scalar multiplication time” for a particular curve.
Brent, Gaudry, Thomé, and Zimmermann in [22] report speedups from several
layers of Karatsuba and Toom recursions, but only beyond cryptographic sizes.

In BBE251, a 16-bit xor is faster than a 32-bit xor, because two 16-bit inputs
are packed into the same space as a 32-bit input and handled in parallel. Shift
costs are trivially eliminated by the standard technique of “bitslicing”: w sep-
arate b-bit inputs i0 = (i0,0, i0,1, . . . , i0,b−1), i1 = (i1,0, i1,1, . . . , i1,b−1), . . . are
batched, transposed into b separate w-bit vectors (i0,0, i1,0, . . .), (i0,1, i1,1, . . .),
. . . , (i0,b−1, i1,b−1, . . .), and then handled without shifts until the end of the
computation. These vectors do not fit simultaneously into CPU registers, but
BBE251 arranges operations so that most loads and stores are overlapped with
computation.

Bitslicing has been used in cryptography before. Two record-setting exam-
ples are Biham’s implementation [18] of DES, a standard hardware-friendly bit-
oriented cipher that had previously been viewed as very slow in software, and the
Matsui–Nakajima implementation [50] of AES, taking just 9.2 cycles per byte
on a Core 2. Aoki, Hoshino, and Kobayashi in [9] pointed out that bitsliced field
arithmetic saves time for binary elliptic curves—but they were still unable to
compete with non-binary elliptic curves. The Pentium III speeds reported in [9,
Table 3] for a subfield curve over a field of size 2163 are not as fast as the Pentium
II speeds reported the same year by Aoki et al. in [8, Table 4] for a curve over a
larger non-binary field. The fast multiplication circuits built into current CPUs
perform a huge number of bit operations per cycle and are generally perceived
as indispensable tools for fast public-key cryptography; it is surprising that bit-
sliced field arithmetic can set new Diffie–Hellman speed records, outperforming
the multiplication circuits.

How these speeds were achieved: high level. There is a limitation to the
power of bitslicing, at least in the pure form used in this paper: bitslicing requires
all computations to be expressed as straight-line sequences of bit operations.
Straight-line computations do not contain data-dependent branches (e.g., “if
P = Q then . . . ”) or data-dependent array indices (e.g., “load x[i], where i is
the next bit of the scalar”). Computations that include data-dependent array
indices can be simulated by straight-line computations that perform arithmetic
on all array elements, and computations that include data-dependent branches
can be simulated in an analogous way (recall that the “program counter” is just
another array index), but these simulations are slow.

Fortunately, a recent line of research has shown how to carry out some
elliptic-curve computations without data-dependent array indices, without data-
dependent branches, and without serious loss of speed. These techniques have

Batch binary Edwards 5

been advertised as efficiently protecting against various types of software side-
channel attacks, such as cache-timing attacks, but the same techniques are also
useful for efficient bitslicing. Specifically:

• Single-scalar multiplication, odd characteristic: [12, Theorem 2.1] says that
the differential-addition formulas from [52] compute X0(nP) from X0(P) on
any Montgomery curve having a unique 2-torsion point. Here X0(P) means
x if P = (x, y) and 0 if P = ∞. See [13, Section 5] for discussion of more
general Montgomery curves.

• Arbitrary group operations, odd characteristic: [14, Theorem 3.3] says that
various addition formulas are complete—i.e., have no exceptional cases—for
any Edwards curve x2 +y2 = 1+dx2y2 having non-square d. Complete addi-
tion formulas allow complete single-scalar multiplication, complete double-
scalar multiplication, etc.

• Arbitrary group operations, characteristic 2: [16, Theorem 4.1] says that
various addition formulas in [16] are complete for any binary Edwards curve
d1(x+ y) + d2(x2 + y2) = (x+ x2)(y + y2) having d2 of trace 1.

The complete differential-addition formulas in [16, Section 7] are reviewed in
Section 3 of this paper and are used in BBE251. Other approaches, such as mixing
bitsliced computation with non-bitsliced computation, do not appear to provide
noticeable benefits for the speed of elliptic-curve scalar multiplication and are
not discussed in this paper.

The unexpected speed of bitsliced binary-field multiplication can be viewed as
motivation to consider bitslicing for a wide variety of higher-level cryptographic
computations and for many other problems. This paper’s results on binary-
elliptic-curve scalar multiplication are one step along this path. The reader is
cautioned, however, that bitslicing will provide smaller benefits for computations
that rely more heavily on random access to memory.

What about PCLMULQDQ? Some CPU designers have begun to realize the po-
tential importance of F2[t] for cryptographic applications. Intel announced in
April 2008 that its processors will eventually include a “carry-less multiplica-
tion” instruction named PCLMULQDQ. Intel’s white paper [40] says that “carry-
less multiplication”—i.e., multiplication in F2[t]—is particularly important for
GCM, a standard for secret-key authenticated encryption relying heavily on
multiplications in the binary field F2128 ; and that “accelerating carry-less multi-
plication can significantly contribute to achieving high speed secure computing
and communication.” Gueron and Kounavis estimate in [37] that scalar mul-
tiplication on the NIST B-233 elliptic curve would take 220000 cycles using a
9-cycle instruction for “carry-less multiplication,” or 70000 cycles using a 3-cycle
instruction for “carry-less multiplication.” NIST B-233 has a somewhat lower se-
curity level than the 251-bit curve used in this paper.

Intel also announced in April 2008 that its processors will, starting in 2010,
include 256-bit vector instructions. The initial instruction set will not include
many integer instructions but will include 256-bit logical operations such as
VXORPS ymm and VANDPS ymm; see [41].

6 Daniel J. Bernstein

It is clear that PCLMULQDQ-based software will easily outperform most soft-
ware for binary-elliptic-curve computations. However, it is not at all clear that
PCLMULQDQ will outperform a 256-bit-vector implementation of the techniques
introduced in this paper. It is not even clear that PCLMULQDQ will outperform
the specific BBE251 software described in this paper!

In any case, one can reasonably speculate that continued improvements in
binary-elliptic-curve performance will encourage cryptographic users to shift to
binary elliptic curves, increasing the importance of techniques to accelerate com-
putations on those curves. Presumably Z-biased CPUs will continue being sold
for years and will continue being used for years after that; the techniques in this
paper will clearly remain important for Z-biased CPUs whether or not they are
helpful for PCLMULQDQ CPUs.

2 Polynomial multiplication

This section explains how to multiply 251-bit polynomials using 33096 bit opera-
tions. More generally, this section presents small explicit upper bounds on M(n),
the minimum number of bit operations needed to multiply an n-bit polynomial
f0 + f1t+ · · ·+ fn−1t

n−1 by another n-bit polynomial g0 + g1t+ · · ·+ gn−1t
n−1.

Inputs and outputs are represented in the standard form: f0 + f1t + · · · +
fn−1t

n−1 is represented as an n-bit string (f0, f1, . . . , fn−1); g0 + g1t + · · · +
gn−1t

n−1 is represented as an n-bit string (g0, g1, . . . , gn−1); and the output h0 +
h1t+ · · ·+h2n−2t

2n−2 is represented as a (2n− 1)-bit string (h0, h1, . . . , h2n−2).

Comparison to previous work. The definition of polynomial multiplication
immediately implies that M(n) ≤ Θ(n2). Karatsuba showed in [45] that M(n) ≤
Θ(nlg 3). Toom showed in [64] that M(n) ≤ n1+o(1), and more precisely M(n) ≤
n2Θ(

√
lgn). Schönhage showed in [61] that M(n) ≤ Θ(n lg n lg lg n), by adapting

an integer-multiplication method by Schönhage and Strassen in [62]. No better
asymptotic bounds are known; Fürer in [32] introduced an asymptotically faster
multiplication method for integers, but it is not clear whether the method can
be adapted to binary polynomials.

Of course, bounds involving Θ, O, etc. are not explicit. To draw conclusions
about M(251), or any other specific M(n), one needs to carefully re-analyze the
algorithms used to prove asymptotic bounds. To draw useful conclusions one
often needs to rethink the algorithm design, looking for constant-factor (and
sub-constant-factor) improvements that are not visible in the asymptotics.

Explicit upper bounds do appear in the literature on hardware multipliers.
The bound M(n) ≤ 2n2 − 2n+ 1 is easy to find in hardware textbooks. Several
cryptographic-hardware papers (see below) have presented explicit upper bounds
on M(n) obtained with Karatsuba’s method, have pointed out that these upper
bounds are considerably below 2n2−2n+1 for cryptographically useful sizes of n,
and have concluded that hardware multipliers should use Karatsuba’s method.
XOR and AND do not have identical hardware costs, but analyses weighted by
the actual costs come to similar conclusions.

Batch binary Edwards 7

The explicit upper bounds on M(n) obtained in this section are better than
anything that can be found in the hardware literature. Here are several examples
of the improved bounds:

• M(128) ≤ 11486. For comparison, Peter and Langendörfer in [57, Table
3] report 14287 bit operations (12100 XORs and 2187 ANDs) for “classic
Karatsuba multiplication,” 32513 bit operations for schoolbook multiplica-
tion, and 13146 bit operations for an “improved iterative Karatsuba.”

• M(163) ≤ 16923. For comparison, Chang, Kim, Park, and Lim in [24] report
21791 bit operations for a “non-redundant Karatsuba-Ofman algorithm.”

• M(193) ≤ 21865. For comparison, Rodŕıguez-Henŕıquez and Koç in [59,
Section 4.1] report 29725 bit operations (20524 XORs and 9201 ANDs).

• M(194) ≤ 21906. For comparison, von zur Gathen and Shokrollahi in [67,
Section 3] report 26575 bit operations.

• M(n) ≤ (103/18)nlg 3 − 7n + 3/2 for n ∈ {2, 4, 8, 16, . . .}; this bound is
not tight. For comparison, Fan, Sun, Gu, and Lam in [29, Table II] report
6.5nlg 3− 6n+ 0.5 bit operations (5.5nlg 3− 6n+ 0.5 XORs and nlg 3 ANDs).
Note that 103/18 = 5.722 . . . < 6.5.
• M(512) ≤ 98018. For comparison, Rodriguez-Henŕıquez and Koç in [59,

Table 1] report 116191 bit operations (81199 XORs and 34992 ANDs).

As these examples illustrate, switching from this paper’s multiplication methods
back to the multiplication methods in the hardware literature often increases
the number of bit operations by more than 20%. On the other hand, one should
not exaggerate the importance of multiplication refinements as a component of
this paper’s new speed records for binary-elliptic-curve cryptography. Bitsliced
binary-Edwards-curve arithmetic, as described in Section 3 of this paper, would
still have set new speed records even if this section’s multiplication methods had
been replaced by the methods in [67].

Schoolbook recursion. One can multiply f0 + f1t+ · · ·+ fnt
n by g0 + g1t+

· · ·+ gnt
n as follows:

• Recursively multiply f0 + f1t+ · · ·+ fn−1t
n−1 by g0 + g1t+ · · ·+ gn−1t

n−1.
• Compute (fng0 + f0gn)tn + (fng1 + f1gn)tn+1 + · · · + fngnt

2n. This takes
2n+ 1 bit multiplications and n bit additions.
• Add. This takes n − 1 bit additions for the coefficients of tn, . . . , t2n−2; the

other coefficients do not overlap.

Consequently M(n+1) ≤M(n)+4n. This “schoolbook recursion” bound implies
the “schoolbook multiplication” bound M(n) ≤ 2n2 − 2n + 1, but schoolbook
recursion is—in combination with other recursions—useful for much larger n’s
than schoolbook multiplication.

Three-way recursion. The well-known Karatsuba identity

(F0 + F1t
n)(G0 +G1t

n)

= F0G0 + tn((F0 + F1)(G0 +G1)− F0G0 − F1G1) + t2nF1G1

8 Daniel J. Bernstein

shows how to multiply 2n-bit polynomials F0 + F1t
n, G0 + G1t

n using three
multiplications of n-bit polynomials and a small amount of overhead. What
actually appeared as “Theorem 2 (Karatsuba)” in the original Karatsuba–Ofman
paper [45] was an integer analogue of the squaring case of the equivalent identity

(F0 + F1t
n)(G0 +G1t

n)

= (1− tn)F0G0 + tn(F0 + F1)(G0 +G1) + (t2n − tn)F1G1.

Either identity easily leads to the bound M(2n) ≤ 3M(n)+8n−4 appearing in,
e.g., [67, Section 2]. The 8n− 4 arises as a sum of three components: 2n for the
additions in F0 + F1 and G0 + G1, another 4n − 2 to subtract F0G0 and F1G1

from (F0 + F1)(G0 + G1), and another 2n − 2 to handle the overlaps between
F0G0, tn · · · , and t2nF1G1.

Much less well known is that the constant 8 here can be improved to 7:
specifically, M(2n) ≤ 3M(n) + 7n − 3. What follows is one way to understand
the improvement.

A generic quadratic polynomial H = H0 +H1x+H2x
2 can be reconstructed

from H(0) = H0, H(1) = H0 + H1 + H2, and H(∞) = H2 by the projective
Lagrange interpolation formula H = (1 − x)H(0) + xH(1) + x(x − 1)H(∞).
Factoring out 1− x produces the slightly simpler formula

H = (1− x)(H(0)− xH(∞)) + xH(1).

In particular, if H is the product of two generic linear polynomials F = F0 +F1x
and G = G0 + G1x, then H(0) = F (0)G(0) = F0G0, H(1) = F (1)G(1) =
(F0+F1)(G0+G1), and H(∞) = F (∞)G(∞) = F1G1, so (F0+F1x)(G0+G1x) =
(1− x)(F0G0 − xF1G1) + x(F0 + F1)(G0 +G1). Substitute x = tn to obtain the
refined Karatsuba identity

(F0 + F1t
n)(G0 +G1t

n) = (1− tn)(F0G0 − tnF1G1) + tn(F0 + F1)(G0 +G1).

For comparison, rewriting the projective Lagrange interpolation formula as H =
H(0) + x(H(1) − H(0) − H(∞)) + x2H(∞) leads to the original Karatsuba
identity.

Say F0, G0 are n-bit polynomials in F2[t] and F1, G1 are k-bit polynomials
in F2[t]. Here is a cost analysis of the refined Karatsuba identity as a method of
computing the product of F0 + F1t

n and G0 +G1t
n:

• Cost M(n): Multiply F0 by G0.
• Cost M(k): Multiply F1 by G1.
• Cost k, assuming k ≤ n: Add F0 to F1.
• Cost k: Add G0 to G1.
• Cost M(n): Multiply F0 + F1 by G0 +G1.
• Cost n− 1, assuming k ≥ n/2: Subtract tnF1G1 from F0G0.
• Cost 2k − 1: Subtract tn(F0G0 − tnF1G1) from F0G0 − tnF1G1.
• Cost 2n− 1: Add tn(F0 + F1)(G0 +G1).

Batch binary Edwards 9

Consequently M(n+ k) ≤ 2M(n) +M(k) + 4k + 3n− 3 if n/2 ≤ k ≤ n.
Notice that this computation does not follow the traditional structure of first

computing the coefficients H0, H1, H2 and then computing H(tn) = H0 +H1t
n+

H2t
2n. In particular, the middle coefficient H1 = (F0 + F1)(G0 +G1)− F0G0 −

F1G1 is not an intermediate result in this computation.
I posted the M(2n) ≤ 3M(n) + 7n − 3 bound (and the resulting M(n) ≤

(103/18)nlg 3 − 7n + 3/2 bound for n ∈ {2, 4, 8, . . .}) in [11, page 7] in 2000,
but I am formally announcing the idea here for the first time. The simplified-
Lagrange-interpolation explanation has not appeared anywhere, even informally,
and is reused below for improvements in five-way recursion.

Five-way recursion. A generic quartic polynomial H = H0 + H1x + H2x
2 +

H3x
3 + H4x

4 over F2 can be reconstructed from the values H(0), H(1), H(t),
H(t+ 1), H(∞) by the projective Lagrange interpolation formula

H = H(0)
(x+ 1)(x+ t)(x+ t+ 1)

t(t+ 1)
+H(1)

x(x+ t)(x+ t+ 1)
(1 + t)t

+H(t)
x(x+ 1)(x+ t+ 1)

t(t+ 1)
+H(t+ 1)

x(x+ 1)(x+ t)
(t+ 1)t

+H(∞)x(x+ 1)(x+ t)(x+ t+ 1).

Easy manual simplification produces the (perhaps not optimal) formula

H = U +H(∞)(x4 + x) +
(U + V +H(∞)(t4 + t))(x2 + x)

t2 + t

where U = H(0)+(H(0)+H(1))x and V = H(t)+(H(t)+H(t+1))(x+t). This
formula, in turn, leads to the following new algorithm to compute the product
of F0 + F1t

n + F2t
2n and G0 + G1t

n + G2t
2n, where F0, F1, G0, G1 are n-bit

polynomials and F2, G2 are k-bit polynomials:

• Cost M(n): Compute H(0) = F0G0.
• Cost M(k): Compute H(∞) = F2G2.
• Cost n+ k, assuming k ≤ n: Compute F0 + F1 + F2.
• Cost n+ k: Compute G0 +G1 +G2.
• Cost M(n): Compute H(1) = (F0 + F1 + F2)(G0 +G1 +G2).
• Cost n− 1, or k if k ≤ n− 1: Compute F1t+ F2t

2.
• Cost n− 1, or k if k ≤ n− 1: Compute G1t+G2t

2.
• Cost n− 1: Compute F0 + (F1t+ F2t

2).
• Cost n− 1: Compute G0 + (G1t+G2t

2).
• Cost M(n + 2), or M(n + 1) if k ≤ n − 1: Compute H(t), the product of
F0 + (F1t+ F2t

2) and G0 + (G1t+G2t
2).

• Cost n− 1: Compute (F0 + F1 + F2) + (F1t+ F2t
2).

• Cost n− 1: Compute (G0 +G1 +G2) + (G1t+G2t
2).

• Cost M(n+ 2), or M(n+ 1) if k ≤ n− 1: Compute H(t+ 1), the product of
(F0 + F1 + F2) + (F1t+ F2t

2) and (G0 +G1 +G2) + (G1t+G2t
2).

10 Daniel J. Bernstein

• Cost 2n+ 1: Compute H(t) +H(t+ 1). The coefficients of t2n+2 and t2n+1

in H(t + 1) are the same as the coefficients of t2n+2 and t2n+1 in H(t), so
this sum has degree at most 2n. (For the same reason, some work could have
been saved in the computation of H(t+ 1).)
• Cost 3n + 4, or 3n + 2 if k ≤ n − 1: Compute V = H(t) + (H(t) + H(t +

1))(tn + t). Note that deg V ≤ 3n.
• Cost 3n−2: Compute U = H(0)+(H(0)+H(1))tn. Note that degU ≤ 3n−2.
• Cost 4k + 3n − 3, assuming n ≥ 2: Compute W = U + V + H(∞)(t4 + t).

Note that degW ≤ 3n.
• Cost 3n− 2: Compute W/(t2 + t). This division is exact: W/(t2 + t) ∈ F2[t].

(For the same reason, some work could have been skipped in the computation
of W .)

• Cost 5n+ 2k − 4: Compute H(∞)(t4n + tn) + (W/(t2 + t))(t2n + tn) + U .

Consequently M(3n) ≤ 3M(n)+2M(n+2)+35n−12 if n ≥ 2, and M(2n+k) ≤
2M(n) +M(k) + 2M(n+ 1) + 25n+ 10k − 12 if 1 ≤ k ≤ n− 1.

The previous state of the art, building on ideas by Zimmermann and Quercia,
Weimerskirch and Paar [68], and Montgomery [53], was an algorithm by Bodrato
in [19] to compute H0, H1, H2, H3, H4 given H(0), H(1), H(t), H(t + 1), H(∞)
using 9 additions, one multiplication by t3 + 1, one division by t, one division by
t+1, and one division by t2+t. The total overhead was about 38n operations: 10n
to compute F (0), F (1), F (t), F (t+1), F (∞) and G(0), G(1), G(t), G(t+1), G(∞);
24n for Bodrato’s computation of H0, H1, H2, H3, H4; and 4n to reconstruct H
from H0, H1, H2, H3, H4. The separate coefficients H0, H1, H2, H3, H4 turn out
to be a distraction, as in the Karatsuba case; this section does better by con-
structing H directly, exploiting the polynomial structure visible in the projective
Lagrange interpolation formula.

Two-level seven-way recursion. Consider the problem of multiplying two
degree-3 polynomials. Apply the refined Karatsuba identity three times, factor
out 1− x, and substitute x = tn, to obtain the identity

(F0 + F1t
n + F2t

2n + F3t
3n)(G0 +G1t

n +G2t
2n +G3t

3n)

= (1− t2n)((1− tn)(F0G0 − tnF1G1 − t2nF2G2 + t3nF3G3)

+ tn(F0 + F1)(G0 +G1)− t3n(F2 + F3)(G2 +G3))

+ t2n(F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn).

Cost evaluation for polynomials with 3n+ k coefficients, assuming k ≥ n/2:

• Cost M(n): Multiply F0 by G0.
• Cost M(n): Multiply F1 by G1.
• Cost M(n): Multiply F2 by G2.
• Cost M(k): Multiply F3 by G3.
• Cost 3n− 3: Compute U = F0G0 − tnF1G1 − t2nF2G2 + t3nF3G3.
• Cost 2n+ 2k − 1: Compute (1− tn)U .
• Cost 2n+M(n): Multiply F0 + F1 by G0 +G1.
• Cost 2k +M(n): Multiply F2 + F3 by G2 +G3.

Batch binary Edwards 11

• Cost 4n − 2: Compute V = (1 − tn)U + tn(F0 + F1)(G0 + G1) − t3n(F2 +
F3)(G2 +G3).

• Cost 2n+2k+M(2n): Multiply F0+F2+(F1+F3)tn by G0+G2+(G1+G3)tn.
• Cost 6n + 2k − 2: Compute (1 − t2n)V + t2n(F0 + F2 + (F1 + F3)tn)(G0 +
G2 + (G1 +G3)tn).

Hence M(3n+ k) ≤M(2n) + 5M(n) +M(k) + 19n+ 8k− 8 if n/2 ≤ k ≤ n. For
example, M(4n) ≤M(2n) + 6M(n) + 27n− 8. This is n− 1 smaller than what
would have been obtained by straightforwardly applying the refined Karatsuba
identity without factoring out 1− x.

Optimization. One can build a table of upper bounds on M(1), . . . ,M(n) by
recursively building a table of upper bounds on M(1), . . . ,M(n − 1) and then
mechanically checking what the inequalities in this section say about M(n). This
computation reaches M(251) in negligible time. One can slightly improve many
of the upper bounds by mechanically removing redundant computations (such
as the equal top coefficients of H(t) and H(t + 1) in five-way recursion) from
straight-line multiplication code.

My web page http://binary.cr.yp.to/m.html presents a table of upper
bounds on M(1), . . . ,M(1000) obtained in this way. Each upper bound is ac-
companied by straight-line multiplication code that has been computer-verified
to multiply correctly and to use exactly the specified number of bit operations.

Often an input to one multiplication is reused in a subsequent multiplication;
for example, w1 in Section 3 participates in many multiplications. One can save
time by caching evaluations of that input, such as F0 + F1 above. To properly
optimize this reuse one should define, e.g., M2(n) as the cost of multiplying
a single n-bit input by two n-bit inputs (serially), and then optimize M2(n)
analogously to M(n).

The reader is cautioned that there are many more multiplication methods in
the literature: for example, more Toom variants, FFTs, etc. Analyzing, refining,
and combining these methods would improve the bounds on M(n) for many
integers n, perhaps including n = 251. Most of the relevant methods are surveyed
in [22] but have not yet been optimized for bit operations.

3 Elliptic-curve scalar multiplication

This section reviews binary Edwards curves; discusses this paper’s selection of
a particular binary Edwards curve; and analyzes the speed of computation of
scalar multiples on that curve.

Review of binary Edwards curves. A binary Edwards curve over a binary
finite field k is a curve of the form d1(x + y) + d2(x2 + y2) = (x + x2)(y + y2)
where d1 ∈ k−{0} and d2 ∈ k−

{
d2
1 + d1

}
. This curve shape was introduced by

Bernstein, Lange, and Rezaeian Farashahi in [16] as a characteristic-2 analogue
to the curve shape introduced by Edwards in [28].

A binary Edwards curve is complete if d2 has trace 1, i.e., if d2 cannot be
written as c2 + c for any c ∈ k. The paper [16] proves that every ordinary elliptic

http://binary.cr.yp.to/m.html

12 Daniel J. Bernstein

curve over k is birationally equivalent over k to a complete binary Edwards curve
if #k ≥ 8, and that various addition formulas on the complete binary Edwards
curve have no exceptional cases.

The case d1 = d2 allows various speedups presented in [16]. For example,
it allows differential addition and doubling—a single step in a “Montgomery
ladder”—using four squarings in k, two multiplications by d1, and five more
multiplications in k. The general case would need four squarings in k, four mul-
tiplications by parameters, and six more multiplications in k.

The selected curve. Define k = F2251 = F2[t]/(t251 + t7 + t4 + t2 + 1). Define
d ∈ k as t57 + t54 + t44 + 1; note that d has trace 1. Define E as the binary
Edwards curve d(x+ x2 + y + y2) = (x+ x2)(y + y2).

This curve is birationally equivalent to the Weierstrass curve v2 + uv =
u3 + (d2 + d)u2 + d8 by (x, y) 7→ (u, v) = (d3(x+ y)/(xy+ d(x+ y)), d3(x/(xy+
d(x+ y)) + d+ 1)). See [16, Section 2].

The main task considered here is scalar multiplication n, P 7→ nP in the
group E(k) =

{
(x, y) ∈ k2 : d(x+ x2 + y + y2) = (x+ x2)(y + y2)

}
, with neu-

tral element (0, 0). Note that this group does not have any points at infinity. See
[16] for further discussion of the group law.

Security issues in curve selection. This curve satisfies all of the standard
criteria for high-security curves:

• The curve has near-prime order. Specifically, the curve has order 4p1 where
p1 is the prime 2249 + 17672450755679567125975931502191870417.
• The twist of the curve has near-prime order, specifically order 2p2 where p2

is the prime 2250 − 35344901511359134251951863004383740833.
• The primes are large enough for high security: generic discrete-logarithm

algorithms use approximately 2124 group operations on average.
• Avoiding subfields: The j-invariant 1/d8 generates the field k.
• Avoiding small discriminants: (2251 +1−4p1)2−2253 is divisible by the large

prime ((2251 + 1− 4p1)2 − 2253)/(−83531196553759) exactly once.
• Avoiding pairing attacks: The multiplicative order of 2251 modulo p1 is not

small: in fact, it is (p1 − 1)/2. The multiplicative order of 2251 modulo p2 is
not small: in fact, it is (p2 − 1)/2.
• Avoiding the GHS attack: The extension degree 251 is a prime, so the only

nontrivial subfield of k is F2. GHS genera over F2 cannot be small: in fact,
they are at least 249, since the multiplicative order of 2 modulo 251 is 50.
See [51].

The curve used in this paper was found by a search through various possi-
bilities for d. Most choices of d fail the near-prime-order requirement, and most
of the remaining choices of d fail the near-prime-twist-order requirement, but
there are still many suitable possibilities. An easy computation with the Magma
computer-algebra system [20] located a few suitable trinomials, many suitable
quadrinomials, etc. The first trinomial found was t141 + t28 + 1, the first quadri-
nomial found was t57 + t54 + t44 + 1 (although (t222 + 1)(t21 + 1) is an interesting
alternative), and the first pentanomial found was t23 + t16 + t15 + t+ 1.

Batch binary Edwards 13

Some standards omit, or weaken, some of the criteria listed above, for several
reasons:

• Some of the criteria do not have known benefits. For example, subfield curves
produce only a small loss of security, which can be corrected by a small
increase in field size. The small-discriminant criterion is even more difficult
to defend; there is no known attack that exploits small discriminants, and
there are reasons to guess that randomly chosen large-discriminant curves
are more dangerous than small-discriminant curves. See [47, Sections 11.1–
11.3].

• Sometimes the criteria have disadvantages. For example, some criteria have
to be weakened by anyone who wants to allow curves with special algebraic
structures, such as “pairing-friendly curves,” “Koblitz curves,” “Gallant–
Lambert–Vanstone curves,” and the new “Galbraith–Lin–Scott curves.” See,
e.g., [34], [33], and [39].

• One of the criteria, twist security, has protocol-level benefits that were not
visible in the traditional study of the elliptic-curve discrete-logarithm prob-
lem. Twist security has, as a result, often been neglected even in situations
where it has no disadvantages. For further discussion of twist security see
[44, Section 4], [21, Section 4], [25, Section 4.1], [12, Section 3], and [31,
Section 5].

This paper’s selection of a curve meeting all the security criteria should not be
interpreted as criticism of curves that meet fewer security criteria. One should
expect some of those curves, when combined with the techniques in this paper,
to achieve even better speeds than the speeds reported in this paper.

Speed issues in curve selection. Even within the restricted pool of curves
meeting all of the security criteria discussed above, there are still considerable
variations in speed. Standard practice is to focus on the highest-speed curves.

In particular, the fastest elliptic-curve-scalar-multiplication methods involve
many multiplications by curve coefficients; it is standard practice to choose these
coefficients to be “small.” The exact definition of “small” varies but is aimed at
speeding up multiplications by these coefficients. For example:

• Weierstrass curves: IEEE Standard P1363 chooses curves y2 = x3 − 3x + b
to “provide the fastest arithmetic on elliptic curves”; see [2, Section A.9].
Chudnovsky and Chudnovsky had pointed out in [26] that choosing a small
coefficient a in y2 = x3 + ax+ b saves time in elliptic-curve scalar multipli-
cation, and that the particular choice a = −3 saves even more time. NIST’s
standard curves were chosen by the recipe specified in IEEE Standard P1363;
see [1, Appendix 6, Section 1.4].

• Montgomery curves: The curve “Curve25519” specified in [12] is the curve
y2 = x3 + 486662x2 + x modulo 2255 − 19. Montgomery had pointed out in
[52] that his fast differential-addition formulas for y2 = x3 + ax2 + x involve
multiplications by (a+ 2)/4 and benefit from (a+ 2)/4 being small.

• Binary Edwards curves: [16] makes the analogous suggestion to choose a
small parameter d for the curve d(x+ x2 + y + y2) = (x+ x2)(y + y2).

14 Daniel J. Bernstein

This paper chooses d = t57 + t54 + t44 +1, combining a small degree with a small
number of terms. Multiplication of a 251-bit polynomial by the quadrinomial
t57 + t54 + t44 + 1 in F2[t] uses only 3 · 251 − 57 = 696 bit operations, and
reduction of the 308-bit product modulo t251 + t7 + t4 + t2 + 1 uses only 200 bit
operations (slightly better than the obvious bound 4 · 57 = 228 since t4, t2, 1 are
evenly spaced), for a total of just 896 bit operations to multiply by d.

Differential addition and doubling on binary Edwards curves. The fol-
lowing formulas are the “affine d1 = d2” and “mixed d1 = d2” formulas from
[16, Section 7], repeated here to keep this paper self-contained.

For each point P = (x, y) ∈ E(k) define w(P) = x + y. Then w(2P) =
1 + d/(d + w(P)2 + w(P)4), and more generally w(Q + P) + w(Q − P) = 1 +
d/(d+w(P)w(Q)(1 +w(P))(1 +w(Q))). The denominators here are never zero.

The following formulas use four squarings, two multiplications by d, and five
more multiplications to compute w(2P), w(Q + P) as fractions W4/Z4,W5/Z5,
given w(P), w(Q) as fractions W2/Z2,W3/Z3 and given w(Q−P) as an element
w1 ∈ k:

C = W2 · (Z2 +W2); W4 = C2; Z4 = d(Z2
2)2 +W4;

V = C ·W3 · (Z3 +W3); Z5 = V + d(Z2 · Z3)2; W5 = V + Z5 · w1.

This operation is called mixed differential addition and doubling.

Conditional swaps. This paper uses a scalar-multiplication strategy intro-
duced by Montgomery in [52, Section 10.3.1], often called the “Montgomery lad-
der.” The most important step is conditionally swapped mixed differential
addition and doubling. This means computation of w(2P), w(Q+P) as frac-
tions W4/Z4,W5/Z5 if β = 0, and computation of w(P +Q), w(2Q) as fractions
W4/Z4,W5/Z5 if β = 1. The inputs are w(P), w(Q) as fractions W2/Z2,W3/Z3

as above; w(Q− P) as an element w1 ∈ k as above; and an extra bit β ∈ {0, 1}.
The standard way to handle β = 1 is to first swap W2/Z2,W3/Z3, then

proceed with the original computation, and finally swap W4/Z4,W5/Z5. The
first swap exactly reverses the roles of P and Q, since w(P −Q) = w(Q−P); the
original computation therefore produces w(2Q), w(P + Q); and the final swap
produces w(P +Q), w(2Q) as desired.

The standard way to swap W2 and W3 conditionally on β without branching
is to replace (W2,W3) by (W2+β(W3−W2),W3−β(W3−W2)). Similar comments
apply to (Z2, Z3), (W4,W5), and (Z4, Z5).

Scalar multiplication. The last step in scalar multiplication computes w(nP),
w(nP + P) as fractions, starting from w(bn/2cP), w(bn/2cP + P) as fractions
and w(P) as an element of k. This is an example of conditionally swapped mixed
differential addition and doubling, where β is the bottom bit of n.

The previous step produces w(bn/2cP), w(bn/2cP +P) as fractions starting
from w(bn/4cP), w(bn/4cP +P) as fractions and w(P) as an element of k. This
is the same computation, except that n is replaced by bn/2c; i.e., β is the second
bit of n. The conditional swap at the end of this step is followed immediately

Batch binary Edwards 15

by, and can be profitably merged with, the conditional swap at the beginning of
the next step.

Similar comments apply to earlier steps. If the target scalar n is known to
be between 0 and 2b − 1 then one can use a sequence of b steps. The first step
produces w(

⌊
n/2b−1

⌋
P), w(

⌊
n/2b−1

⌋
P +P) from w(

⌊
n/2b

⌋
P), w(

⌊
n/2b

⌋
P +P);

i.e., from 0, w(P).
To summarize: Given w(P) ∈ k and a b-bit scalar n, this scalar-multiplication

method uses b conditionally swapped mixed differential additions and doublings
to produce (W,Z) such that W/Z = w(nP). The 2b conditional swaps can be
merged into just b+ 1 conditional swaps.

Postprocessing. One can divide W by Z, obtaining w(nP) ∈ k, by computing
WZ2251−2 with (e.g.) 250 squarings and 11 more multiplications. The multiplica-
tions produce Z3, Z7, Z26−1, Z212−1, Z224−1, Z225−1, Z250−1, Z2100−1, Z2125−1,
Z2250−1, and WZ2251−2.

A small extra computation shown in [16, Section 7], using the x and y coordi-
nates of P separately, would produce the x and y coordinates of nP separately;
but the w coordinate is adequate for elliptic-curve Diffie–Hellman. One can also
check directly that w corresponds to a curve point by checking that d/(w+w2)
has trace 0 and that w+w2 times the half-trace of d/(w+w2) has trace 0. These
computations are much faster than scalar multiplication and are not discussed
further in this paper.

Instead of inverting Z at the end of the computation one can use affine coor-
dinates, eliminating some multiplications at the cost of an inversion in each step.
Inversions are well known to benefit from batching, thanks to “Montgomery’s
trick” from [52, page 260]. However, each inversion still costs slightly more than
3 multiplications, wiping out most if not all of the gain. Montgomery in [52,
page 261] compared batched affine coordinates to projective coordinates in the
non-binary case and reported negligible performance differences. One should not
expect affine coordinates to provide large savings in the binary case.

Performance: bit operations. A 251-bit single-scalar multiplication as de-
scribed here involves 44679665 bit operations; this number has been computer-
verified. The main cost is 43011084 bit operations for 1266 field multiplications
(1255 in the main loop and 11 in the final division). Each multiplication uses
33974 bit operations: 33096 bit operations for 251-bit multiplication in F2[t], and
878 bit operations to reduce the 501-bit product modulo t251 + t7 + t4 + t2 + 1.
The other costs are as follows:

• 397518 bit operations for 1254 squarings (1004 in the main loop and 250 in
the final division), each using 317 bit operations;
• 449792 bit operations for 502 multiplications by d, each using 896 bit oper-

ations;
• 315005 bit operations for 1255 additions, each using 251 bit operations; and
• 506266 bit operations for 1004 conditional swaps, which at the cost of 250

bit operations are merged into 504 conditional swaps, each costing 1004 bit
operations.

16 Daniel J. Bernstein

In some protocols the 251-bit scalar is always a multiple of 4, allowing slight
speedups. In other protocols a 249-bit scalar is adequate, allowing slight further
speedups.

Performance: cycles. The BBE251 software reads a batch of scalars n1, . . . , n128

and a batch of curve points P1, . . . , P128 and computes a batch of multiples
n1P1, . . . , n128P128. Each scalar is represented as a 32-byte string in little-endian
form. Each curve point is represented as a field element w as described in the
previous section; w is, in turn, represented as a 32-byte string.

One might think that writing fast software for this computation on a Core 2
CPU is a simple matter of generating code for the bit operations described in this
paper, replacing XORs and ANDs with a C compiler’s intrinsic _mm_xor_si128
and _mm_and_si128 operations on 128-bit vectors. A single core of the CPU can
carry out three of the corresponding PXOR and PAND instructions per cycle, so
44 million bit operations should be completed in about 15 million cycles—under
120000 cycles per input. Transposing the n’s and P ’s into bitsliced form, and
transposing the results out of bitsliced form, takes negligible time.

There is, however, a critical bottleneck in any straightforward implementa-
tion: namely, load throughput. In one cycle the CPU can carry out three opera-
tions on six vectors in registers; but loading those six vectors from memory into
registers costs six cycles—the Core 2 performs only one load in each cycle. The
results of the three operations are ready to be used for further operations in the
next cycle, so one can imagine loading (e.g.) 56 input vectors for a 28-bit mul-
tiplication, carrying out all 956 bit operations for the multiplication, and then
storing the final outputs; but the Core 2 has only 16 128-bit vector registers.

Recursive multiplication methods such as Karatsuba’s method might seem
to be ideal for reducing loads and stores, since they split larger multiplication
problems into smaller multiplication problems that fit into registers. However,
the first step in decomposing a 2n-bit multiplication into n-bit multiplications is
to add 2n vectors to another 2n vectors—and the 2n/3 cycles for these additions
are swamped by 4n cycles for loads. Similar comments apply to the recombina-
tion of (2n− 1)-bit products into a (4n− 1)-bit product.

Further contributing to the memory pressure is the fact that the Core 2’s
vector instructions are two-operand instructions such as “replace a with a+ b,”
not three-operand instructions such as “replace c with a+ b.” Copying a to c, in
situations where a and b need to be reused, takes away one of the three XOR/AND
slots available in a cycle. Copying a to c via memory uses an extra load.

BBE251 takes several measures to reduce the number of loads and stores. Most
importantly, it merges decompositions and recombinations across multiple layers
of recursion, reusing sums while they are still in registers. As a simple example,
adding (a0, . . . , a2n−1) to (a2n, . . . , a4n−1) takes 4n loads and 2n additions; sub-
sequently adding (a0, . . . , an−1) to (an, . . . , a2n−1), adding (a2n, . . . , a3n−1) to
(a3n, . . . , a4n−1), and adding (a0+a2n, . . . , an−1+a3n−1) to (an+a3n, . . . , a2n−1+
a4n−1) would take 6n loads and 3n additions; but performing all of these oper-
ations together reduces the 10n loads to 4n loads and 2n copies.

Batch binary Edwards 17

The current version of BBE251 merges most operations across two levels of
recursion, and takes fewer than 44 million cycles, although still many more than
the target of 15 million. It is not yet clear how close the correlations are between
optimized bit-operation counts and optimized cycle counts, but it is clear that
schoolbook multiplication could not have been competitive with BBE251. Larger-
scale load/store elimination is underway and can be expected to further improve
BBE251’s performance.

References

1. — (no editor), Digital signature standard (DSS), Federal Information Process-
ing Standard 186-2, National Institute of Standards and Technology, 2000. URL:
http://csrc.nist.gov/publications/fips/. Citations in this document: §3.

2. — (no editor), Standard specifications for public key cryptography, IEEE, 2000.
Citations in this document: §3.

3. — (no editor), Information theory workshop, 2006. ITW ’06 Chengdu, IEEE, 2006.
See [67].

4. — (no editor), SPEED: software performance enhancement for encryption and
decryption, 2007. URL: http://www.hyperelliptic.org/SPEED. See [35].

5. — (no editor), Design, automation & test in Europe conference & exhibition, 2007.
DATE ’07, IEEE, 2007. See [57].

6. — (no editor), Fifth international conference on information technology: new gen-
erations (ITNG 2008), 7–8 April 2008, Las Vegas, Nevada, USA, IEEE, 2008. See
[37].

7. — (no editor), Fifth workshop on fault diagnosis and tolerance in cryptography
(FDTC ’08), IEEE, 2008. See [31].

8. Kazumaro Aoki, Fumitaka Hoshino, Tetsutaro Kobayashi, A cyclic window algo-
rithm for ECC defined over extension fields, in [58] (2001), 62–73. Citations in this
document: §1.

9. Kazumaro Aoki, Fumitaka Hoshino, Tetsutaro Kobayashi, Hiroaki Oguro, Elliptic
curve arithmetic using SIMD, in [27] (2001), 235–247. Citations in this document:
§1, §1.

10. Daniel V. Bailey, Christof Paar, Efficient arithmetic in finite field extensions with
application in elliptic curve cryptography, Journal of Cryptology 14 (2001), 153–
176. ISSN 0933–2790. Citations in this document: §1.

11. Daniel J. Bernstein, Fast multiplication (2000). URL: http://cr.yp.to/talks.

html#2000.08.14. Citations in this document: §2.
12. Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in [69] (2006),

207–228. URL: http://cr.yp.to/papers.html#curve25519. Citations in this doc-
ument: §1, §1, §1, §3, §3.

13. Daniel J. Bernstein, Can we avoid tests for zero in fast elliptic-curve arithmetic?
(2006). URL: http://cr.yp.to/papers.html#curvezero. Citations in this docu-
ment: §1.

14. Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, in
[49] (2007), 29–50. URL: http://cr.yp.to/papers.html#newelliptic. Citations
in this document: §1.

15. Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of
Cryptographic Systems, accessed 3 June 2009 (2009). URL: http://bench.cr.yp.
to. Citations in this document: §1.

http://csrc.nist.gov/publications/fips/
http://www.hyperelliptic.org/SPEED
http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curvezero
http://cr.yp.to/papers.html#newelliptic
http://bench.cr.yp.to
http://bench.cr.yp.to

18 Daniel J. Bernstein

16. Daniel J. Bernstein, Tanja Lange, Reza Rezaeian Farashahi, Binary Edwards
curves, in [55] (2008), 244–265. URL: http://cr.yp.to/papers.html#edwards2.
Citations in this document: §1, §1, §1, §3, §3, §3, §3, §3, §3, §3, §3.

17. Eli Biham (editor), Fast Software Encryption ’97, Lecture Notes in Computer
Science, 1267, Springer-Verlag, 1997. ISBN 3-540-63247-6. See [18].

18. Eli Biham, A fast new DES implementation in software, in [17] (1997), 260–272.
Citations in this document: §1.

19. Marco Bodrato, Towards optimal Toom-Cook multiplication for univariate and
multivariate polynomials in characteristic 2 and 0, in [23] (2007), 116–133. URL:
http://bodrato.it/papers/#WAIFI2007. Citations in this document: §2.

20. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I.
The user language, Journal of Symbolic Computation 24 (1997), 235–265. Citations
in this document: §3.

21. Colin Boyd, Paul Montague, Khanh Nguyen, Elliptic curve based password authen-
ticated key exchange protocols, in [66] (2001), 487–501. URL: http://sky.fit.qut.
edu.au/~boydc/papers/. Citations in this document: §3.

22. Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, Paul Zimmermann, Faster
multiplication in GF(2)[x], in [65], 153–166. URL: http://wwwmaths.anu.edu.au/
~brent/pub/pub232.html. Citations in this document: §1, §2.

23. Claude Carlet, Berk Sunar (editors), Arithmetic of finite fields, first international
workshop, WAIFI 2007, Madrid, Spain, June 21–22, 2007, proceedings, Lecture
Notes in Computer Science, 4547, Springer, 2007. ISBN 978-3-540-73073-6. See
[19].

24. Nam Su Chang, Chang Han Kim, Young-Ho Park, Jongin Lim, A non-redundant
and efficient architecture for Karatsuba-Ofman algorithm, in [70] (2005), 288–299.
Citations in this document: §2.

25. Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, David Pointcheval, The
Twist-AUgmented technique for key exchange, in [69] (2006), 410–426. URL:
http://www.loria.fr/~gaudry/papers.en.html. Citations in this document: §3.

26. David V. Chudnovsky, Gregory V. Chudnovsky, Sequences of numbers generated
by addition in formal groups and new primality and factorization tests, Advances
in Applied Mathematics 7 (1986), 385–434. MR 88h:11094. Citations in this doc-
ument: §3.

27. George I. Davida, Yair Frankel (editors), Information security, 4th international
conference, ISC 2001, Malaga, Spain, October 1–3, 2001, proceedings, Lecture
Notes in Computer Science, 2200, Springer, 2001. ISBN 978-3-540-42662-2. See
[9].

28. Harold M. Edwards, A normal form for elliptic curves, Bulletin of the Ameri-
can Mathematical Society 44 (2007), 393–422. URL: http://www.ams.org/bull/
2007-44-03/S0273-0979-07-01153-6/home.html. Citations in this document: §3.

29. Haining Fan, Jiaguang Sun, Ming Gu, Kwok-Yan Lam, Overlap-free Karatsuba-
Ofman polynomial multiplication algorithms for hardware implementations, 7 Oct
2008 version (2008). URL: http://eprint.iacr.org/2007/393. Citations in this
document: §2.

30. Kenny Fong, Darrel Hankerson, Julio López, Alfred Menezes, Field in-
version and point halving revisited, IEEE Transactions on Computers 53
(2004), 1047–1059. ISSN 0018–9340. URL: http://www.cacr.math.uwaterloo.ca/
techreports/2003/tech_reports2003.html. Citations in this document: §1.

31. Pierre-Alain Fouque, Reynald Lercier, Denis Réal, Frédéric Valette, Fault attack on
elliptic curve with Montgomery ladder implementation, in [7] (2008), 92–98. URL:
http://www.di.ens.fr/~fouque/index-pub.html. Citations in this document: §3.

http://cr.yp.to/papers.html#edwards2
http://bodrato.it/papers/#WAIFI2007
http://sky.fit.qut.edu.au/~boydc/papers/
http://sky.fit.qut.edu.au/~boydc/papers/
http://wwwmaths.anu.edu.au/~brent/pub/pub232.html
http://wwwmaths.anu.edu.au/~brent/pub/pub232.html
http://www.loria.fr/~gaudry/papers.en.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://eprint.iacr.org/2007/393
http://www.cacr.math.uwaterloo.ca/techreports/2003/tech_reports2003.html
http://www.cacr.math.uwaterloo.ca/techreports/2003/tech_reports2003.html
http://www.di.ens.fr/~fouque/index-pub.html

Batch binary Edwards 19

32. Martin Fürer, Faster integer multiplication, in [42] (2007), 57–66. URL: http://
www.cse.psu.edu/~furer/. Citations in this document: §2.

33. Steven Galbraith, Xibin Lin, Michael Scott, Endomorphisms for faster elliptic
curve cryptography on a large class of curves, in [43] (2009), 518–535. URL: http://
eprint.iacr.org/2008/194. Citations in this document: §1, §3.

34. Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, Faster point multiplica-
tion on elliptic curves with efficient endomorphisms, in [46] (2001), 190–200. MR
2003h:14043. Citations in this document: §3.

35. Pierrick Gaudry, Emmanuel Thomé, The mpFq library and implementing curve-
based key exchanges, in [4] (2007), 49–64. URL: http://www.loria.fr/~gaudry/
papers.en.html. Citations in this document: §1, §1, §1.

36. Tim Güneysu, Christof Paar, Ultra high performance ECC over NIST primes on
commercial FPGAs, in [55] (2008), 62–78. Citations in this document: §1, §1.

37. Shay Gueron, Michael E. Kounavis, A technique for accelerating characteristic 2
elliptic curve cryptography, in [6] (2008), 265–272. Citations in this document: §1.

38. Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software implementa-
tion of elliptic curve cryptography over binary fields, in [48] (2000), 1–24. URL:
http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-42.ps. Ci-
tations in this document: §1, §1.

39. Darrel Hankerson, Koray Karabina, Alfred Menezes, Analyzing the Galbraith–Lin–
Scott point multiplication method for elliptic curves over binary fields (2008). URL:
http://eprint.iacr.org/2008/334. Citations in this document: §1, §3.

40. Intel Corporation, Carry-less multiplication and its usage for computing
the GCM mode (2008). URL: http://software.intel.com/en-us/articles/

carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode. Ci-
tations in this document: §1.

41. Intel Corporation, Intel Advanced Vector Extensions programming reference,
2008. URL: http://softwarecommunity.intel.com/isn/downloads/intelavx/

Intel-AVX-Programming-Reference-31943302.pdf. Citations in this document:
§1.

42. David S. Johnson, Uriel Feige (editors), Proceedings of the 39th annual ACM sym-
posium on theory of computing, San Diego, California, USA, June 11–13, 2007,
Association for Computing Machinery, New York, 2007. ISBN 978–1–59593–631–8.
See [32].

43. Antoine Joux (editor), Advances in Cryptology—EUROCRYPT 2009, 28th annual
international conference on the theory and applications of cryptographic techniques,
Cologne, Germany, April 26–30, 2009, proceedings, Lecture Notes in Computer
Science, 5479, Springer, 2009. ISBN 978-3-642-01000-2. See [33].

44. Burton S. Kaliski Jr., One-way permutations on elliptic curves, Journal of Cryp-
tology 3 (1991), 187–199. Citations in this document: §3.

45. Anatoly A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on au-
tomata, Soviet Physics Doklady 7 (1963), 595–596. ISSN 0038–5689. URL: http://
cr.yp.to/bib/entries.html#1963/karatsuba. Citations in this document: §2, §2.

46. Joe Kilian (editor), Advances in cryptology: CRYPTO 2001, 21st annual inter-
national cryptology conference, Santa Barbara, California, USA, August 19–23,
2001, proceedings, Lecture Notes in Computer Science, 2139, Springer, 2001. ISBN
3-540-42456-3. MR 2003d:94002. See [34].

47. Ann Hibner Koblitz, Neal Koblitz, Alfred Menezes, Elliptic curve cryptography:
the serpentine course of a paradigm shift (2008). URL: http://eprint.iacr.org/
2008/390. Citations in this document: §3.

http://www.cse.psu.edu/~furer/
http://www.cse.psu.edu/~furer/
http://eprint.iacr.org/2008/194
http://eprint.iacr.org/2008/194
http://www.loria.fr/~gaudry/papers.en.html
http://www.loria.fr/~gaudry/papers.en.html
http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-42.ps
http://eprint.iacr.org/2008/334
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-Programming-Reference-31943302.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-Programming-Reference-31943302.pdf
http://cr.yp.to/bib/entries.html#1963/karatsuba
http://cr.yp.to/bib/entries.html#1963/karatsuba
http://eprint.iacr.org/2008/390
http://eprint.iacr.org/2008/390

20 Daniel J. Bernstein

48. Çetin Kaya Koç, Christof Paar (editors), Cryptographic hardware and embedded
systems—CHES 2000: Proceedings of the 2nd International Workshop held in
Worcester, MA, USA, August 2000, Lecture Notes in Computer Science, 1965,
Springer, 2000. ISBN 3-540-42521-7. See [38].

49. Kaoru Kurosawa (editor), Advances in cryptology—ASIACRYPT 2007, 13th in-
ternational conference on the theory and application of cryptology and information
security, Kuching, Malaysia, December 2–6, 2007, proceedings, Lecture Notes in
Computer Science, 4833, Springer, 2007. ISBN 978-3-540-76899-9. See [14].

50. Mitsuru Matsui, Junko Nakajima, On the power of bitslice implementation on Intel
Core2 processor, in [56] (2007), 121–134. Citations in this document: §1.

51. Alfred Menezes, Minghua Qu, Analysis of the Weil descent attack of Gaudry, Hess
and Smart, in [54] (2001), 308–318. Citations in this document: §3.

52. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-
ization, Mathematics of Computation 48 (1987), 243–264. ISSN 0025–5718. MR
88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718(198701)48:

177<243:STPAEC>2.0.CO;2-3. Citations in this document: §1, §3, §3, §3, §3.
53. Peter L. Montgomery, Five, six, and seven-term Karatsuba-like formulae, IEEE

Transactions on Computers 54 (2005), 362–369. Citations in this document: §2.
54. David Naccache (editor), Topics in cryptology—CT-RSA 2001: Proceedings of the

Cryptographers’ Track at the RSA Conference held in San Francisco, CA, April
8–12, 2001, Lecture Notes in Computer Science, 2020, Springer, 2001. ISBN 3-540-
41898-9. MR 2003a:94039. See [51].

55. Elisabeth Oswald, Pankaj Rohatgi (editors), Cryptographic hardware and embedded
systems—CHES 2008, 10th International Workshop, Washington, D.C., USA, Au-
gust 10–13, 2008, Proceedings, Lecture Notes in Computer Science, 5154, Springer,
2008. ISBN 978-3-540-85052-6. See [16], [36].

56. Pascal Paillier, Ingrid Verbauwhede (editors), Cryptographic hardware and embed-
ded systems—CHES 2007, 9th international workshop, Vienna, Austria, September
10–13, 2007, proceedings, Lecture Notes in Computer Science, 4727, Springer, 2007.
ISBN 978-3-540-74734-5. See [50].

57. Steffen Peter, Peter Langendörfer, An efficient polynomial multiplier in
GF(2m) and its application to ECC designs, in [5] (2007). URL: http://

ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=

4211979&count=305&index=229. Citations in this document: §2.
58. Sihan Qing, Tatsuaki Okamoto, Jianying Zhou (editors), Information and com-

munications security, third international conference, ICICS 2001, Xian, China,
November 13–16, 2001, Lecture Notes in Computer Science, 2229, Springer, 2001.
ISBN 3-540-42880-1. See [8].

59. F. Rodŕıguez-Henŕıquez, Çetin Kaya Koç, On fully parallel Karatsuba multipliers
for GF(2m), in [60] (2003), 405–410. Citations in this document: §2, §2.

60. S. Sahni (editor), Proceedings of the international conference on computer science
and technology, Acta Press, 2003. See [59].

61. Arnold Schönhage, Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2, Acta Informatica 7 (1977), 395–398. ISSN 0001–5903. MR
55:9604. URL: http://cr.yp.to/bib/entries.html#1977/schoenhage. Citations
in this document: §2.

62. Arnold Schönhage, Volker Strassen, Schnelle Multiplikation großer Zahlen, Com-
puting 7 (1971), 281–292. ISSN 0010–485X. MR 45:1431. URL: http://cr.yp.to/
bib/entries.html#1971/schoenhage-mult. Citations in this document: §2.

63. William Stein (editor), Sage Mathematics Software (Version 3.2.3), The Sage
Group, 2009. URL: http://www.sagemath.org. Citations in this document: §1.

http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://cr.yp.to/bib/entries.html#1977/schoenhage
http://cr.yp.to/bib/entries.html#1971/schoenhage-mult
http://cr.yp.to/bib/entries.html#1971/schoenhage-mult
http://www.sagemath.org

Batch binary Edwards 21

64. Andrei L. Toom, The complexity of a scheme of functional elements realizing the
multiplication of integers, Soviet Mathematics Doklady 3 (1963), 714–716. ISSN
0197–6788. Citations in this document: §2.

65. Alfred J. van der Poorten, Andreas Stein (editors), Algorithmic number theory, 8th
international symposium, ANTS-VIII, Banff, Canada, May 17-22, 2008, proceed-
ings, Lecture Notes in Computer Science, 5011, Springer, 2008. ISBN 978-3-540-
79455-4. See [22].

66. Vijay Varadharajan, Yi Mu (editors), Information security and privacy—6th Aus-
tralasian conference, ACISP 2001, Sydney, Australia, July 11-13, 2001, proceed-
ings, Lecture Notes in Computer Science, 2119, Springer, 2001. ISBN 978-3-540-
42300-3. See [21].

67. Joachim von zur Gathen, Jamshid Shokrollahi, Fast arithmetic for polynomials
over F2 in hardware, in [3] (2006), 107–111. Citations in this document: §2, §2, §2.

68. André Weimerskirch, Christof Paar, Generalizations of the Karatsuba algorithm
for efficient implementations (2006). URL: http://eprint.iacr.org/2006/224.
Citations in this document: §2.

69. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th interna-
tional conference on theory and practice in public-key cryptography, New York, NY,
USA, April 24–26, 2006, proceedings, Lecture Notes in Computer Science, 3958,
Springer, 2006. ISBN 978-3-540-33851-2. See [12], [25].

70. Jianying Zhou, Javier Lopez, Robert H. Deng, Feng Bao (editors), Information se-
curity, 8th international conference, ISC 2005, Singapore, September 20–23, 2005,
proceedings, Lecture Notes in Computer Science, 3650, Springer, 2005. ISBN 3-540-
29001-X. See [24].

http://eprint.iacr.org/2006/224

